Definition of Signal

()A signal is a function of time representing a physical variable, e.g. voltage, current, spring displacement, share market prices, number of student asleep in the Lab, cash in the bank account.
© Typically we will use a mathematical function such as $f(t), u(t)$ or $y(t)$ to describe a signal which is a continuous function of time.

Signal Classification

Signals may be classified into:

1. Continuous-time and discrete-time signals
2. Analogue and digital signals
3. Periodic and aperiodic signals
4. Energy and power signals
5. Deterministic and probabilistic signals
6. Causal and non-causal
7. Even and Odd signals

Classification of signals

© A continuous-time (or analog) signal exists at all instants of time. The real word consists of continuous signals, and are usually written as a function of t.
© A discrete-time signal exists only at discrete instants of time and is usually derived from a continuous signal by the process of sampling, e.g. measuring the temperature at 3 o'clock in the afternoon.

Signal Classification- Continuous vs Discrete

Continuous-time

Discrete-time

(a)

(b)

Signal Classification- Analogue vs Digital

Analogue, continuous

Analogue, discrete

Digital, continuous

Signal Classification

- Periodic and non-periodic signals
- A signall is periodic if

$$
x(t)=x(t+T)
$$

where T is the period.
\square Non-periodic signals are those which doest not follow this euation
$x(t) \neq x(t+T)$

A signal $x(t)$ is said to be periodic if for some positive constant T_{o}

$$
x(t)=x\left(t+T_{o}\right) \quad \text { for all } t
$$

The smallest value of T_{o} that satisfies the periodicity condition of this equation is the fundamental period of $x(t)$.

Signal Classification- Energy v/s Power

- Energy of a signal $x(t)$ is given by:

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

- Power of a signal $x(t)$ is given by:

$$
P_{x}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|x(t)|^{2} d t
$$

- A signal is Energy signal if $0<E x<\infty$
- A signal is Power signal if $0<P x<\infty$

Energy Signal and Power Signal

- Consider applying a time varying voltage $v(t)$ to a resistor,
the instantaneous average power drops across the resistor is,

$$
p(t)=v^{2}(t) / R
$$

or

$$
p(t)=i^{2}(t) \times R
$$

Power Signal

- For the purposes of signal classification the average power of a signal is measured over all time, i.e., $T \rightarrow \infty$
so

$$
\text { average power }=\operatorname{Lim}_{T \rightarrow \infty}\left(\frac{1}{T} \int_{t=-T / 2}^{T / 2} y^{2}(t) d t\right)
$$

Energy Signal

- To get energy in Joules (J), it is necessary to integrate over some specified time interval.
- So the energy in a signal between time 0 and time T :

$$
\operatorname{energy}(T)=\int_{t=0}^{T} y^{2}(t) d t
$$

- and thus the total energy is

$$
\text { total energy }=\int_{t=-\infty}^{\infty} y^{2}(t) d t
$$

Relation of Power and Energy Signal

\square the average power can be expressed as:

$$
\text { average power }=\operatorname{Lim}_{T \rightarrow \infty}\left(\frac{1}{T} \times \text { total energy }\right)
$$

- Clearly, because of the $1 / T$ factor, if the total energy is finite then the average power is zero.
- Conversely, if the average power is not zero then the total energy is infinite

Energy Signal

- if the resistor is 1Ω, the power is equal to the square of the voltage or current signal. In general, the instantaneous power of a signal is taken to be the square of the signal:

$$
p(t)=y^{2}(t)
$$

- The average power of a signal is its mean value. For instance, over a time period $-T / 2$ to $T / 2$

$$
\text { average power }=\frac{1}{T} \int_{t=-T / 2}^{T / 2} y^{2}(t) d t
$$

Example - Finite Energy Signal

- Consider a transient signal that starts at $t=0$ and decays to zero with an exponential form:

$$
\begin{aligned}
y(t) & =e^{-t}, \quad t \geq 0 \\
\text { total energy } & =\int_{t=-\infty}^{\infty} y^{2}(t) d t=\int_{t=0}^{\infty} e^{-2 t} d t=\frac{1}{2}
\end{aligned}
$$

which is a finite energy signal

Example - Non-zero Average Power Signal

- The average power of a periodic signals can be written as, (WHY?)

$$
\bar{P}=\frac{1}{T} \int_{t=0}^{T} y^{2}(t) d t
$$

- Let $y(t)=\sin (\omega t)$, where T is the period equals $2 \pi / \omega$

$$
\bar{P}=\frac{1}{T} \int_{t=0}^{T} \sin ^{2}\left(\frac{2 \pi}{T} t\right) d t=\frac{1}{2}
$$

Example

Deterministic Signals

- Everything is known about the signal
$-x(t)=A \sin (w t),\{A, w\}$ known parameters, no noise or unknown parameters

Random Signals

- Some property or parameter of the signal is unknown
- May be completely random such as additive noise $n(t)$
- random process
- Deterministic signal with additive noise eg. $r(t)=x(t)+$ $n(t)$
- Random parameter of a deterministic signal eg. $x(t)=$ Asin(wt), A is random number
$-r(t), n(t), x(t)$ all random processes

Signal Classification- Deterministic vs Random

Deterministic

Random

A real function $x_{e}(t)$ is said to be an even function of t if

$$
x_{e}(t)=x_{e}(-t)
$$

A real function $x_{o}(t)$ is said to be an odd function of t if

$$
x_{o}(t)=-x_{o}(-t)
$$

Signal Classification- Even vs Odd

Every signal $x(t)$ can be expressed as a sum of even and odd components because:

$$
x(t)=\underbrace{\frac{1}{2}[x(t)+x(-t)]}_{\text {even }}+\underbrace{\frac{1}{2}[x(t)-x(-t)]}_{\text {odd }}
$$

